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Abstract

A spline-based method for approximating thin shell dynamics is presented here. While the

method is developed in the context of the Donnell-Mushtari thin shell equations, it can be

easily extended to the Byrne-F1/igge-Lur'ye equations or other models for shells of revolution

as warranted by applications. The primary requirements for the method include accuracy,

flexibility and efficiency in smart material applications. To accomplish this, the method was

designed to be flexible with regard to boundary conditions, material nonhomogeneities due

to sensors and actuators, and inputs from smart material actuators such as piezoceramic

patches. The accuracy of the method was also of primary concern, both to guarantee full

resolution of structural dynamics and to facilitate the development of PDE-based controllers

which ultimately require real-time implementation. Several numerical examples provide initial

evidence demonstrating the efficacy of the method.
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Contract Number NAS1-19480 while the authors were visiting scientists at the Institute for Computer Applica-
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1 Introduction

A spline-based method for numerically approximating thin shell dynamics is presented in

this paper. This research is motivated by the growing number of applications involving shell

models for which explicit solutions are typically unavailable. A specific example involves the

development of control strategies for reducing vibrations, fatigue and structure-borne noise in

aircraft fuselages. Typically, some form of cylindrical shell model is employed with the specific

equations and boundary conditions dictated by the application or experimental setup. When

numerically discretizing the models in such applications, the approximation method must be

flexible with respect to boundary conditions and adaptable with regard to nonhomogeneities

in materials and geometries. For example, if piezoceramic patches bonded to or embedded in

the shell are used as actuators or sensors, the numerical method must be sufficiently flexible so

as to permit extension to models incorporating these components. Also, the primary motion

in many vibration and noise control applications is bending-dominated and the numerical

method must accurately approximate such dynamics. Finally, from a control perspective, the

approximation method must adequately preserve stability properties of the physical system

as well as be sufficiently efficient so as to permit real-time implementation.

Current techniques for approximating shell dynamics include modal expansions [17, 18,

26], finite element discretizations [2, 3, 4, 11, 13, 14, 15, 20, 21, 22, 25, 28, 30] and finite

difference approximations [31, 32]. From a theoretical perspective, modal expansions arise

naturally when separating variables in linear shell models. In models for which analytic

expressions for the eigenfunctions or modes can be obtained, this provides a straightforward

and often quite efficient method of approximation. The difficulty, however, lies in the fact

that analytic expressions describing mode shapes are known only for a restricted class of

boundary conditions and for a limited set of models. For general boundary conditions and

models, or systems involving coupling between a shell and an adjacent component (e.g., an

acoustic field or a piezoceramic actuator), the modes must first be numerically approximated

or experimentally determined before expansions can be formed.

Experimental determination of natural frequencies and modes is typically accomplished

by exciting the structure using an acoustic source, shaker, magnetic driver, et cetera. At each

natural frequency, the shape of the corresponding mode is determined and characterized for

use in modal expansions. As detailed in [32, 33], however, difficulties are encounted in this

procedure in plate and shell-like structures due to the presence of multiple independent mode

shapes which can occur at single experimental frequencies. In such cases, the experimentalist

must excite the structure at various locations and complete an orthogonalization process to

obtain a complete modal basis. The determination of which frequencies/modes to test for

this behavior requires numerical analysis or extreme care when performing the experiments.

Furthermore, as discussed in [32], internal or air damping will cause distortion of modes (e.g.,

modal lines that do not cross) which if not accounted for, will degrade modal expansions for

approximating the structural dynamics.

In applications, modes determined for boundary conditions yielding analytic expressions

(e.g., simply-supported end conditions) are occasionally used to approximate solutions to mod-

els with more general boundary conditions or models incorporating additional components.

In some cases, the influence of various boundary conditions on modal characteristics has been

investigated [17]; however, without any convergence analysis for such techniques, convergence



of the numerical approximatesto the true model solution cannot be guaranteed. Finally, it
is difficult to apply modal techniquesin applications modeled by nonlinear shell equations
or nonlinear actuator contributions (e.g., electrostrictive actuators or piezoceramic actuators

embedded in constrained damping layers).

Finite element approaches, on the other hand, are directly applicable for a variety of

boundary and coupling conditions and in models including actuator contributions or nonlinear

dynamics. Moreover, a large body of software exists for obtaining finite element solutions for

various shell models (see [13, 20, 21, 22] for discussions of finite element methods and software

for shells of revolution).

A difficulty when developing and applying finite element methods for shell applications,

however, concerns the manifestation of various locking phenomena. Shear locking, which

has also been studied extensively in the context of Reissner-Mindlin plate models, is due to

element incompatibility when enforcing the Kirchhoff-Love constraint of vanishing transverse

shear strains as the shell thickness h tends to zero [1, 10]. In shell applications, an even more

serious problem leading to the failure of various finite element methods is the phenomenon of

membrane or shear-membrane locking. This phenomenon occurs when the total deformation

energy is bending dominated, and is due to smoothness and asymptotic constraints in the shell

model which are not appropriately represented by the approximation method (see [3, 4, 15, 25,

28]). If these constraints are not satisfied by approximating elements, the numerical solution is

often overly stiff in the sense that the model exhibits bending dynamics which the approximate

solution cannot match. As detailed in [25], mesh sizes must be chosen significantly smaller

than the shell thickness to ensure accurate approximations with high-order finite elements in

such bending dominated regimes. These examples also illustrate that even with such mesh

size restrictions, low-order finite element methods often fail in such regimes. The use of finite

elements which exhibit locking is detrimental in simulations and will seriously degrade the

performance of any controllers designed around such methods.

A second issue which must be considered when developing finite element methods for shells

concerns the piecewise constant material parameters and inexact boundary conditions which

often arise in smart material applications. For example, the use of piezoceramic actuators leads

to piecewise discontinuities in the density, stiffness, Poisson ratio and damping parameters.

Consequently, finite element meshes must be aligned with the actuator boundaries to maintain

accuracy (the reader is referred to [34] for a discussion of finite elements designed specifically

for piezoelectric applications). In experiments involving shells, slight energy loss must often be

modeled into the boundary conditions to account for inexact boundary clamps. Consequently,

elements must be provided with extra degrees of freedom to accommodate these boundary

conditions. Standard commercial codes not providing these capabilities will lead to potentially

inaccurate results when applied to shells with smart material actuators and/or sensors.

The use of finite difference discretizations for approximating thin shell dynamics is less

common due to inherent difficulties with the high-order equations and boundary conditions

arising in the models. The reader is referred to [31] for further discussion of finite difference

methods for shell applications.

In this paper, we consider a Galerkin method for discretizing thin shell models with linear

or cubic splines chosen as basis elements for approximating the longitudinal and circumferen-

tial motion and cubic splines used to approximate the transverse component. These choices

are motivated by smoothness and accuracy criteria, adaptability for a variety of boundary

2



conditions, and suitability when including the contributions of actuators such as piezoceramic

patches bonded to the shell [6]. For the discussion here, the shells are assumed to have lengths

that are relatively short in relation to the radii, and the Donnell-Mushtari shell equations are

employed. This facilitates the discussion while providing a framework which is easily extended

to more accurate long shell models through the inclusion of Byrne-Fl_gge-Lur'ye components.

In this study, the formulation of the method and numerical examples demonstrating the ac-

curacy, efficiency and flexibility of the method are presented. Emphasis in these examples

is placed on demonstrating that when h_ denotes the axial mesh size, the expected O(h2=)

and O(h 4) accuracy of the method is maintained when approximating with linear and cubic

splines, respectively. Convergence analysis and further analysis of the method with regards

to membrane and shear locking will appear in a future companion paper.

In Section 2, the strong and weak forms of the modeling equations for a thin shell with

surface-mounted piezoceramic patches are summarized. Modal analysis for the special case

of an undamped shell with constant coefficients and simply-supported boundary conditions is

discussed in Section 3. This provides a framework for testing the convergence of the approxi-

mate mass and stiffness components in the system. The approximation method and resulting

finite dimensional matrix system are detailed in Section 4. Finally, examples illustrating the

method are presented in Section 5. These include modal approximations for various bound-

ary conditions as well as results demonstrating convergence rates when approximating shell

dynamics generated by various external inputs. To illustrate the shell dynamics generated by

the piezoceramic patches, a modeled voltage spike to the patches is used as input in the final

example. The resulting frequencies are then compared with those obtained in the eigenvalue

(modal) analysis to demonstrate the consistency of the method.

2 Donnell-Mushtari Equations
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Figure 1. Thin cylindrical shell with surface mounted piezoceramic patches.
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We considerhere a shell of length g, thickness h and radius R having mass density p,

Young's modulus E, Poisson ratio v and Kelvin-Voigt damping coefficient CD. As depicted

in Figure 1, the axial direction is taken along the x-axis. The displacements of the middle

surface in the longitudinal, circumferential and transverse directions are denoted by u, v and
w, respectively.

Bonded to the shell are s pairs of piezoceramic patches which can be employed as sensors

and/or actuators in structural and structural acoustic applications [5, 19]. To simplify the

exposition, the patches are all assumed to have thickness hp_, Young's modulus Ep_, Poisson

ratio upc, and Kelvin-Voigt damping coefficient CDp_. Furthermorel it is assumed that the

glue bonding layer provides negligible contribution to the structural dynamics. The reader is

referred to to [6, 9] for details concerning the incorporation of differing patch characteristics

and bonding layers in the ensuing models).

Throughout this discussion, it will be assumed that external inputs to the shell will be in

the form of transverse, longitudinal and circumferential surface forces as well as line moments

and forces generated by the patches. The surface forces can be used to model a variety of

phenomena including coupling interactions with adjacent fields (e.g., acoustic fields - see [5])

and input from certain actuators. The patch moments and forces arise when the elements are

used as actuators. While more general inputs can be considered, the above-mentioned cases

demonstrate the flexibility of the numerical method for typical smart materials applications.

2.1 Strong Form of Equations

As detailed in [6, 26], moment and force balancing yields the Donnell-Mushtari equations

a2v ONe RNxe- R4o- _ o(g&c, S,_,(x,0)
Rph--_ - -_ Ox i=1 09

02w RO2M_ 1 02Me 2 02M_e
Rph--_-_ Ox 2 R 082 Ox08 + Ne

= R_,_ - _ [R 02(M_)p_' 1 ore(Me)pc,]
,=1L ox2 + k _ j

(2.1)

as a model for the thin shell dynamics. Here M,, Me, M,e, and Me_, are internal moments,

while N,, Ne, N,e and No, denote internal force resultants. External surface forces are denoted

by _, qe, q,_ whereas the external resultants (line moments and forces) generated by the i *h

patch pair are designated by (M,)p,,, (Me)pc,, (N,)pc, and (Ne)pc,. The indicator function

where

1 ,
&,2(x) = 0 ,

--1 ,

s_.,(., 0)- &,2(.)_1,2(0),

z < (z_i+z20/2 f 1 ,

z = (_,_+ _2_)/2 , _,_(0) = / o ,z > (zli + :c2_)/2 -1 ,

0 < (011 + 02i)/2

0 = (eli + 02i)/2

O > (eX_+ 020/2
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indicatesthe senseof the forcesgeneratedby the i th patch pair having edges at xli, x2i, eai, e2_.

The symmetry of the function arises from the property that for homogeneous patches hav-

ing uniform thickness, equal but opposite strains are generated about the point (_i,0_) =

((xa_ + x2,)/2, (0a_ + e2_)/2) in the two coordinate directions. Similarly, the characteristic
function

1 , xai_<x_<x2i, 01__<0_<02_Xpc_(x,0) = 0 , otherwise

will be used in ensuing discussion to isolate internal and external contributions due to the i th

patch pair.

Under the assumption that stress is proportional to a linear combination of strain and

strain rate, the internal moments and force resultants in regions of the shell not covered by

patches are given by

N_-(l_u2) _xx+_ _-_+w + (l_u2)0t _-Tx+_ -0--_+w

Eh
No_

(1 --u 2)

10v w Ou]

] + (1 - u2) at -_ + --R+ u-_z

N=e= Ne=- 2(l +u) -_x + ROoj + 2(l +u)Ot -_x + ROe]

M_- 12_ 7;,) [0x 2 +/_2 oe2j 12(1- _,2)ot[ox2 + R_aO_]

(2.2)

-Eh 3 [ 1 02w

Mo = I2-(T -- u2) [/_2 002

a2_l cDh 3 0 [ I O2w 02w]

+ u-0-fix2J - 12(1 - u 2) at [R 2 002 + U-_x2J

_o=mox _

-Eh a 02w

12R(1 + u) OxO0

_Dh3 O [02_]
12R(1 + u)Ot [OxOe]

(see [6] or [26] for the undamped case). The substitution of these equations in (2.1) yields

the damped form of the Donnell-Mushtari equations for a uniform, homogeneous shell that is

devoid of patches.

The bonding of piezoceramic patches to the shell produces contributions due to both

internal (material) and external moments and forces. The internal contributions are due to

the geometrical and material changes afforded by the patches. The external contributions

result from the piezoelectric effect in the patches which is manifested as generated strains in

response to applied voltages.

As detailed in [6, 9], the internal force resultant N_ is given by

N=- l_u2 _xx+_ _-_+w +i=ll_U_c _xx+---_ -_+w Xp_,(x,O)

-_l - _,2ot _ +-_ -N + _ +_=_ 1- _,,_2ot _ +-g -_ + w x_,(_,o)

(2.3)
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for systems in which the patches have identical properties (compare with (2.2)). Analogous

expressions are given in [6, 9] for the remaining resultants and the resultants when the patches

have differing material characteristics.

To characterize the external contributions, it is typical to start with the assumption that

the strains generated by a patch are proportional to the applied voltage [6]. Since differing

voltages can be applied to the outer and inner patches in the pair, we will differentiate between

the two with V_l(t) and V_2(t) used to denote the voltages to the outer and inner patches in

the i th pair, respectively. The proportionality constant relating generated strain to the input

voltage is designated by dzl. As detailed in [6], the total external moments and forces generated

(v_)po,= [(v_)p_,,+ (v.).,=] x.,(x,e)

(ve)p_,= [(Me).,1+ (v_)_,=]x_,(x,e)

(N:)p.,= [(N:)p:.+ (N:)p_,:]Xv_,(x,O)Sp.,(x,O)

(Ne)p.,= [(No)p.,_+ (No)p.,_]Xv_,(x,t_)Sp_,(x,O)

by the patches are

where

::::[1(4( 

(2.4)

(Mo)_e,_ -1-E;:e [_ (4(hbhpe)2-h2)] _Vil

(2.5)

-Ep_ d31¼1

-G°

When substituted into (2.1), the expressions (2.4) provide the input from the patches when
voltages are applied.
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2.2 Boundary Conditions

Appropriate boundary conditions are dictated by the experimental setup or application under

consideration. In many setups, such as the experimental shell apparatus at NASA Langley

Research Center, the shell is supported by heavy endcaps. In such cases, the fixed-edge
conditions

aw
u=v=w=--c0x =0 , x=0,_ (2.6)

may adequately model the end behavior of the shell.

If slight boundary movement or rotations are suspected, "almost fixed" boundary condi-

tions of the type discussed in [7, 8] can be employed. Such boundary conditions can be used

to model the slight energy which result due to imperfect clamping of the structure.

A third type of commonly considered boundary conditions are the simply-supported or

shear diaphragm edge conditions

v=w=M::=N_=O, x=0,_. (2.7)

These boundary conditions are theoretically attractive since they provide one of the few sit-

uations in which explicit modal expansions can be calculated for the Donnell-Mushtari shell

equations. They are of limited use when modeling experimental shells, however, since they

are appropriate only for endcaps which prevent movement in the v and w directions but

are suffciently flexible in the x-direction so that negligible moments M_ and forces N_ are

generated.

The Galerkin method of this work is equally efficient to implement for models incorporating

the fixed-edge boundary conditions (2.6), "almost fixed" boundary conditions, or the simple-

supported edge conditions (2.7). The method is demonstrated for the fixed-edge and simply-

supported conditions while modifications to adapt the method to "almost fixed" can be found

in [7, 8]. Later discussion will also illustrate the manner through which the method can be

adapted to alternative boundary conditions which many arise in physical applications.

2.3 Weak Form of Equations

As noted in (2.1), the strong form of the modeling equations involves first and second deriva-

tives of both the moment and force resultants. For structures with surface-mounted or embed-

ded actuators or sensors (e.g., piezoceramic patches), this differentiation leads to difficulties

due to discontinuities in the resultants. The internal resultants contain piecewise discontinu-

ities due to material changes introduced by the patches (see for example, (2.3)). The external

patch contributions are also discontinuous since they are defined only over regions covered by

patches (see (2.4)). As a result, formal analysis and approximation using the strong form of

the modeling equations leads to derivatives of the Dirac delta "function."

To alleviate these diffculties, we consider a weak form of the modeling equations. As

detailed in [6], such equations can be derived from energy considerations and are equivalent to

the strong form of the modeling equations under suitable smoothness conditions. This yields

a form of the model which facilitates well-posedness analysis [5] and eliminates the difficulties

associated with the discontinuous resultants. Moreover, smoothness requirements on basis

functions are reduced which proves advantageous when constructing system matrices.



The weak form of (2.1), asderived from energyconsiderationsin .[6], is given by

f2_ f_ _ 02U 0_1 0_1

Jo Jo'[ Rph-_l -4- RNx-_x -+ Nox 00 0,7,}-- - R_xr h - R A.._x xjpe, Ox
i=l

dxdO = 0

Jo Jo I
RMe 02_3 02_3002 2M:_o _x _-0

dxdO = 0

(2.8)

=0

for all _" = [yl, r]2, 7?3]E V where V denotes the space of test functions (as detailed in [6], the
indicator functions appear only in the definition of the external force resultants in the weak

form of the equations). Specific choices for V depend upon the boundary conditions. For the

fixed-edge boundary conditions (2.6), the space of test functions is taken to be

V = HoX(_) × Hol(_) × Ho2(a)

where

H_(_) : {r/E HI(_): 77(0) = y(i) = 0}

H3(a) {_ • H2(_t): 77(0) = 77:=(0) = y(l) = r]_(g) = 0}.

In the case of the simply-supported edge conditions (2.7), essential boundary conditions are
imposed only on the circumferential and transverse functions and V is taken to be

V = H_(g_) x H_(_) × H_(fl)

with

H_(fl) = {r] • H2(_): r](0) = T/(l) = O} .

In general, V is simply taken as the subset of the traditional Sobolev spaces satisfying essential

boundary conditions (the reader is referred to [7] for modifications to account for "almost

fixed" boundary conditions).

A comparison between (2.8) and (2.1) illustrates that in the weak form, derivatives are

transferred from the discontinuous resultants onto suitably smooth test functions. This allevi-

ates the difficulties associated with the discontinuities and reduces smoothness requirements

on approximate solutions.
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3 Modal Solution- Simply-Supported Boundary Con-

ditions, Constant Coefficients, No Damping

As noted in the introduction, closed form modal expressions for shell models can be obtained

only in a limited number of cases. One case in which analytic frequencies and modes can

be calculated is the undamped (cD = 0) shell model with simply-supported edge conditions

(2.7) and constant parameters p, v and E. Separation of variables in this setting is classical

and can be found in numerous texts (e.g., [27]); we summarize the arguments here to facili-

tate numerical examples in later sections. While such conditions are not attained in typical

shell applications, the consideration of the undamped, constant coefficient shell model with

simply-supported edge conditions provides an excellent means of testing discretization tech-

niques since approximate solutions can be compared with analytic values. The discretization

techniques can then be used to approximate natural frequencies, modes and shell dynamics in

models which incorporate piecewise constant parameters (including damping) and physically

realistic boundary conditions.

Throughout this section, it is assumed that cD = 0 and p, v and E are constant. Since

our interest here is restricted to the calculation of natural frequencies and modes, we will also

consider the shell model to be unforced (no external patch contributions and _ = qe = q_ = 0).

In this case, the strong form of the Donnell-Mushtari thin shell equations (2.1) can be written

in the operator format
.02g

ph-_-_ = iff (3.1)

where ff = [u, v, w] T . The operator L here is given by

Eh
L-

1 - u 2

where k = h2/12. Boundary conditions for the shell are denoted by

6.

Due to linearity, the displacements are expressed as

u(t,x,O)=T(t)U(x,O)

v(t,x,9) = T(t)V(x,O)

w(t,x,O) = T(t)W(x,O),

and spatial and temporal components are separated to yield the eigenvalue problem

LU + phw2U =

BU=O
(3.2)



alongwith the temporal equation T" + wST = 0. Here w is the circular frequency of vibration

and U = [U, V, W]T contains the vibration modes in the axial, circumferential and transverse

directions. We point out that separating variables to arrive at the eigenvalue problem (3.2) is

equivalent to the assumption of a harmonic response in all components and one obtains the

same eigenvalue problem in both cases.

The structure of the eigenfunctions U, V and W is dependent upon the boundary conditions

with closed form expressions attainable in only a few cases. To illustrate, we consider the

eigenvalue problem (3.2) with the simply-supported boundary conditions (2.7). One form of

the natural vibration modes for this case is

U(x,0) = Alcos(_-)cos(mO)

V(x,O) = Bl sin (-_) sin(mO) (3.3)

W(x,O) = Cl sin (ng---f ) cos(mO) .

The choice of the cosine representation for the x component of the axial vibration and sines

for the circumferential and radial vibrations guarantees that the modes satisfy the boundary

conditions. The relationship between the circumferential and axial/radial vibrations dictates

that the former must be 90 ° out-of-phase from the latter two in 0 (see the moment and force

expressions (2.2) or operator definition (3.1)).

To determine the relationship between the frequencies w and the wave numbers m and n,

the expressions (3.3) are substituted into (3.2) to yield the system

_2 _ H1 _(1 + v) v_ Aa 0

2-_(1 + v) 9/2- H2 -m B1 = 0 (3.4)

vA -m W - H3 C1 0

where

and

m 2

Ha = A2 + --_-(1 - u)

As

H2 = -_(1 - v) + m s

U_2 = _(1 - u2)w2R2

n_r R
A-

L

k= k h 2
R 2 12R 2 •

A nontrivial solution is determined by setting the determinant to zero.

cubic equation

f16 _ Ksf_4 + K1F? -/4o = 0

This yields the

(3.5)
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in f_2.The coefficientshere aregiven by

The solutions to this cubic equation are then givenby

= 3/ 1cos +--
3 3 3

where

+ 1 - u (rn2 +

, j = 1,2,3

(-27Ko :2K 3 _ 9K1 K: )a = cos -1 _ 2_/(K_ - 3K1) 3

Finally, the natural frequencies for the shell, with units of hertz, are given by

ft.._j _ Efm'_i- 2--_-R p(1--v:)' j=1,2,3. (3.6)

We point out that due to the cubic nature of the characteristic equation, three natural fre-

quencies and mode shapes are obtained for each set of wave numbers m and n. This leads to

a significant interlacing of frequencies.

A second set of modes which satisfy the boundary conditions and 0 compatibility criteria

is

U(x, O) = A2 cos (_-_) sin(mO)

W(x,_)=C2sin(-_)sin(mt_) .

The system which arises when using this form of the modes is

_ - H1 _m(1 + u) uA A2 02

-_(1 +u) _2_ H2 m B2 = 0

uA m 122 -//3 C_ 0

which differs in sign in the (1,2), (2, 1), (2,3) and (3,2) elements from (3.4) which was obtained

using the first set of modal expansions. The characteristic equations, however, are the same

in both cases and are given by (3.5). Hence both sets of expressions yield the same natural

frequencies for the shell. This should be expected since the second set simply represents a

phase shift in 0 of the first. For this reason, most authors consider only the first set of vibration
modes.

In some instances, however, the second set (3.7) contributes linearly independent modes

and hence must be retained in order to obtain a complete basis for approximation. This is

illustrated in the examples of Section 5.1. Further details regarding the modal analysis can

be found in [16].
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4 Approximation Method

To approximate the solutions u,v,w to the system (2.8) or eigenvalue problem (3.2), basis

functions B_k(O,x),13,k(O,x ) and 13_,k(O,x ) in Y are chosen and used to form expansions

_G

uN(t, e, x) = E uk(t)_,,_(e, x)
k----1

vN(t,O, x) = F_. vk(tlB_(O,x)
k=l

w_(t,°, _) = E w_(t)B_(o,x) .
k=l

(4.1)

The time-dependent generalized Fourier coefficients uk(t), vk(t), wk(t) are then determined by

orthogonalizing the residual with respect to linearly independent test functions from the span
of the bases.

To exploit the tensor nature of the cylindrical shell domain F/ and periodicity in 0, the

bases for the three displacements are constructed with Fourier components in 8 and spline

components in x. When expressed with real components, this yields

uN(t, e, _) = 5: uo,,(t)_,,o(x)

+ _, __. u,_,_(t)cos(mO)B,.,(x)+ __, _ fim,_(t)sin(mO)B,_,,(x)
m=l n=l m=l n=l

(4.2)

with similar expressions for^v N (t, 0, x) and w N (t, 0, x). In the expansions, M_, M., M_ are the

Fourier limits and N_, N_, N_ denote the number of splines B_(x), B,.(x), B_.(x) used when

approximating the longitudinal, circumferential and transverse displacements, respectively.

The total number of basis functions for each component is Af_ = N_ • (2M_+ 1),Af. = N_ •

(2M.+_) and X_ = _. (2M_ + 1).

4.1 Axial Basis Functions

The choice of splines in the axial variable is motivated by the following criteria:

(i) efficiency;

(ii) flexibility with regard to internal and external patch contributions;

(iii) adaptability with respect to various boundary conditions;

(iv) accuracy.

For the longitudinal and circumferential displacements, both linear and cubic spline bases are

considered. Due to differentiability requirements, only cubic splines are used when approxi-

mating the transverse displacement.

In all cases, a uniform partition along the x-axis is considered with gridpoints x,_ =

nh_,h_ = g/N,n = 1,... ,N. For n = -1,0,1,... ,N + 1, standard cubic splines are de-

fined by
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(x- x._2)3

hl + 3h_(z- x.-1) + 3h_(x- _._1)2- 3(_- _n_2)3
1 3 2 3h=(x_+l

b,_(x) = _ h_ + 3h_(x=+l - x) + - z) 2 - 3(x=+1 - x) 3
(_.+2- _)_
0

(see [29]). The standard linear splines are defined by

- X._l) ,
1 (Xn+l -- X) ,

_(x) = V_ 0
x • [xn,z.+l] ,
otherwise

, z • [_-2, x.-1]

, X • [Xn_l, Xn]

, x • [x_,x_+_]

, X • [Xn+l, Xn+2]

, otherwise

(4.3)

(4.4)

for n = 0,-.-,N.

In both cases, the standard splines must be modified to satisfy the essential boundary

conditions to ensure approximate solutions in V. These modifications are summarized as

follows.

(i) Fixed displacements at x = 0,g:

To construct basis functions satisfying fixed displacements (but unspecified slopes) at

x = 0, g, the modified cubic splines are taken to be

I bo(x)-4b__(x) , n=0

bl(x ) - b_l(X ) , n _- 1

bn(x) = bn(x) , n-- 2,...,N- 2

bg-l(X) -- by+l , n = N - 1

bN(X ) -- 4bN+I(X ) , _2 = N

(4.5)

for a total of N + 1 functions. To satisfy the same condition, the first and last linear splines

are omitted from the set to yield

b_(x) = c_(x), n = 1,-..,N- 1 . (4.6)

It should be noted that with these definitions, b_(0) = b,_(g) = 0 and _(0) = 5,_(g) = 0.

(ii) Fixed displacements and slope at x = O,g:

Only the cubic splines are required to satisfy a condition of fixed displacement and slope

at the endpoints since this is a condition imposed only on the transverse displacements. In

this case, the modified splines are taken to be

bo(x)- 2b_l(x) - 2bl(x) , n = 1
bn(x) -- b,_(x) , n - 2,..-,N- 2 , (4.7)

bu(x)--2bu-a(x)--2bN+a(x) , n=X-1

for a total of N - 1 basis functions. Note that these functions satisfy

t,.(O) = t,'(O) = b,_(e) = b',_(g) = O.

13



4.2 Bases for Specific Boundary Conditions

Appropriate bases for various boundary conditions are then constructed by considering mod-

ified splines satisfying any essential boundary conditions. For example, the bases used for

simply-supported shells (2.7) must satisfy the conditions B_,(0) = B.,(i) = 0, Bw.(0) =

Bw, (£) = 0 (the moment and shear conditions are natural and hence do not need to be explic-

itly enforced). Choices for shell models with fixed-edge conditions are summarized in Table 1

while corresponding choices for simply-supported edge conditions are given in Table 2. The

last column in each table summarizes the total number of axial functions in each expansion.

Once the axial bases are chosen, they are combined with the Fourier components in

to form the total bases. We reiterate that the basis limits in each case are given by 2_ =

N_ • (2M_ + 1),_¢v = Nv • (eM_ + 1) andX_ = N_ • (2M_ + 1).

We point out that the linear and cubic spline bases described here are but two choices from

among many that can be made for the axial components. For the applications considered here,

cubic splines provided a good balance between accuracy, efficiency and adaptability with re-

gards to patches and boundary conditions. If higher accuracy is desired, however (with slightly

more expense when constructing system matrices), quintic splines can be employed. Similarly,

spectral expansions employing Legendre, Chebyshev or sine functions can be employed once

modifications have been made for boundary conditions.

Shell Component Axial Basis Functions Component Definition Axial Limit

longitudinal- linear B_,,(x) = _(x) _(x) defined in (4.6) _r = N_ - 1

cubic B_,,,(x) = b_(z) b=(x) defined in (4.5) ._'= = N= + 1

circumferential - linear B,_,,(x) = _(x) _(x) defined in (4.6) /Q. = N_ - 1

cubic B,_,,(x) = b_(x) b=(x) defined in (4.5) ._v = N_ + l

transverse - cubic B_,_(x) = b=(z) b=(x) defined in (4.7) N_ = N_ - 1

Table 1. Axial basis definitions for models with fixed-edge boundary conditions (2.6).

Shell Component Axial Basis Functions Component Definition Axial Limit

longitudinal- linear B,.,,,(x) = c_(x) c_(x) defined in (4.4) /Q_ = N_ + 1

cubic B_,,(x) = b,_(x) b,_(z) defined in (4.3) /Q= = N_ + 3

circumferential- linear B,_n(x) = Q(x) _,,(x) defined in (4.6) N_ = N. - 1

cubic B,_,,(x) = b,,(x) b,(x) defined in (4.5) _]Q_= N_ + 1

transverse- cubic = definedin (4.5) = + 1

Table 2. Axial basis definitions for models with simply-supported boundary conditions (2.7).
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4.3 Components in the Finite Dimensional System

With bases thus defined, approximating subspaces are taken to be H N = span{B_k }kH--_l,HN =

span{B_k}_l and H y = span{B_k}_ 1. It should be noted that H y = H y x H g x H N C Y.

The approximating system is then determined by restricting the weak form (2.8) to H g with

basis functions used as test functions. This is equivalent to orthogonalizing the residual with

respect to elements from H y.

4.4 Matrix System

To form the resulting matrix system, the generalized Fourier coefficients for the three expan-

sions (4.1) are first consolidated in the vectors

uso(t)=
Ul(t)

u:¢o(t)
, v_c'(t)=

vl(t)

v:co(t)
, w'_(t)=

wl(t)

w_co(t)
(4.8)

The full set of coefficients is then represented as v_x(t) = [/d(t) J¢", ]dH_(t), WX_(t)] T, where

The mass, stiffness and damping matrices as well as the forcing vector for the full system

M H =

have the form

UM

M

WM

Ull _- UI2

U21 + U22

U31

Vn + ¼2

½1 + V22

Wll

_r21

6
Ek=1 W3k

(4.9)

_r11+ D12

G1 "q- &2 _Z21 -}- V22 G1

_z31U31 EL_ G_

and

#x(t) = r_

F_

(4.10)

The various submatrices contain individual components which arise when the weak form (2.8)

is restricted to H N. For example, the approximation of the mass and stiffness components in

the longitudinal equation of (2.8) yields
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1r _01 [ s(i) [UM]j,k= ph+ 2_ p,oh,_X,_,
i=1

RBuk Bu,dxdO

f2_ ft EhR 2 Xp_,l -_x dxdO(ii) [Ull]j,k = .'o Jo _ + _ 2Ep_hp_R ] OB_,k OB,,_
i=1 l - v_ e j Ox

/o"/: ](iii) [V_l]j,k _ + _ 2Ep_hwvp_ OB"k OB's= . 2 Xp_i _-dxdO
i=1 1 -- /]pe OqO

/--:,r ](iv) [Wn]j,k = L1 _ v2 + _ 2Ev_hp_vpe OB,_,--- ,-:T- Xw, Bwk-_x dXdO
JO JO i----1 1 -- Vl_ e

_o2_ _o_ [ Eh(v) [Y_2]s,k= 2(iTv) + _ Ep_hp_ OB,_k013,,,_=1 T_ -v"_peXp_ Ox O0 dxdO

(vi) [U12]S,k ¢o ¢0 2R_-+ v) + R(1 + ,pe) Xp_' O0 O0 dxdO

= Rq=B,,, + R__,(N_)v_,---_- x dxdO(vii) [Fu]j Jo .Io i=l

with similar expressions for the submatrices U_I, _1, 1_11, _2 and /)'12 which contain the in-

ternal damping contributions. The submatrices for the approximated circumferential and

transverse equation are constructed analogously with details given in [16]. It should be noted

that due to the presence of the characteristic functions in the force and moment resultants,

the domains of integration for the patch contributions are restricted to those regions covered

by patches. This is consistent with the fact that material and geometric changes, as well as

patch inputs, occur only in those regions.

In first-order form, the system has the form

[. 0 [ 00 M x" 0x(t) -K_

[KE _ 0 0_'(0) ][,,0 0'¢(o) ]

-Kg 0X(t) + FZ(t)

(4.11)

Multiplication of the inverted mass matrix yields a Cauchy equation of the form

_lN(t) = ANyN(t) + gN(t)

y_(o) = yo_ , (4.12)

16



• T

where yN E R 2_¢ = [9_¢(t),0V(t)] • This yields a form which is suitable for simulations,

parameter estimation and control applications. Note that the system can also be adapted to

alternative boundary conditions through modifications of the first and last basis functions.

Flexibility in this regard is also a hallmark of the method.

Finally, we point out that approximation of the eigenvalue problem (3.2) using the Fourier-

Galerkin method yields the generalized matrix eigenvalue problem

Kfvq X = w2MAfvqAf (4.13)

where Kff and M _¢ are defined in (4.9). As illustrated in the examples of Section 5.1, (4.13)

can be used to approximate the frequencies and modes for undamped shells with various

internal characteristics (due to actuators and sensors) and boundary conditions.

5 Examples

To illustrate various facets of the Fourier-Galerkin method, two types of examples are pre-

sented. In the first set of examples, approximation of frequencies and modes is considered

for simply-supported and fixed-edge shells. This is accomplished by forming the mass and

stiffness matrices and solving the generalized matrix eigenvalue problem (4.13). This serves

two purposes. It illustrates the accuracy of the method in approximating the mass and stiff-

ness components in the system and demonstrates the method as an effective technique for

obtaining modal information when analytic or experimental values are unavailable.

The second set of examples illustrates the approximation of static and dynamic shell

responses to various forces. The initial steady state example illustrates that the expected

O(h_) and O(h 4) convergence rates are obtained when approximating a static shell response

(this example involves the solution of a matrix system with coefficient matrix Kff and vector

__H). Analogous dynamic examples demonstrate that the same accuracy is obtained when the

method is used to obtain the time-dependent system (4.12) which is then marched in time.

The latter example also incorporates the internal Kelvin-Voigt damping. The dynamics of the

system in response to patch inputs are considered in the final example. Natural frequencies are

compared to those obtained by solving the generalized matrix eigenvalue problem to illustrate

consistency among techniques.

In these examples, the following shell characteristics were used: thickness h = .01 in,

length g = 12 in, radius R = 3.0 in, mass density p = .283 Ib/in 3, Young's modulus E = 3.0 ×

107 lb/in 2, Poisson ratio u = 0.3 and Kelvin-Voigt damping coefficient CD = 15.09936 lb. in. s 2.

These values were chosen so as to permit comparison with Donnell-Mushtari shell results in

[24, pp. 307-310]. We emphasize that the method is not restricted to such dimensions or

ratios, however, and analogous convergence results have been obtained with a wide range of

parameters.

5.1 Modal Examples: Simply-Supported Shell

In Section 3, separation of variables was used to obtain analytic expressions for modes and

natural frequencies of shell models with simply-supported boundary conditions. Here we com-

pare the approximate solutions obtained by solving the matrix eigenvalue problem (4.13) with

17



the analytic values.This providesa meansof testing the accuracyof the method beforeusing
it to approximate in settings in which analytic solutions are unavailable. To illustrate, we
consider the casesof purely axisymmetric modes (m = 0, n _> 1), purely extensional modes

(m >__1, n = 0) and general modes (m > 1, n > 1).

5.1.1 m = 0, n _> 1 Axisymmetric Modes

Analytic frequencies for the axisymmetric case can be calculated via (3.6) with m = 0 while

corresponding modes can be determined from (3.3) or (3.7) (see [16] for details). Corre-

sponding approximate frequencies, obtained by solving (4.13) with Fourier limit M = 0, are

compared with analytic values in Table 3. As noted in Section 3, three frequencies are ob-

tained for each configuration of 1/2 wavelength (fixed values of n), and this is reflected in the

analytic and approximate results in Table 3. Two of the frequencies correspond to coupled

axial/radial modes while the remaining one corresponds to an uncoupled torsional (circum-

ferential) mode. The frequencies of the torsional modes are boxed to facilitate comparison

between the corresponding functional modal approximations.

The cubic spline approximates in Table 3 were obtained using N = 8 basis functions

whereas N = 32 linear splines were used to obtain the corresponding results in columns 8-10.

It is noted that accurate frequency approximates are obtained with the cubic splines with

a maximum relative error (over the reported results) of 0.3% occurring for the frequency

2255.52 Hz. Due to the limited accuracy of the linear splines, significantly more basis functions

must be used to obtain accurate approximations, and a 1.25% error at 2255.52 Hz remains,
even with N = 32 functions.

For n = 1, cross sections at 8 = 0 of corresponding modes approximated using M = 0, N =

16 cubic splines are plotted in Figure 2. The coupling between the axial/radial components

is readily verified for the 406.8 Hz and 603.83 Hz modes while the plot of the 266.05 Hz

mode illustrates that for M = 0, the torsional mode is uncoupled (examples in Section 5.1.3

illustrate that all three modes are coupled for M > 1).

It should be noted that for each n, all three frequencies and modes are automatically

yielded by the approximation method whereas (3.3) and (3.7) must be employed to obtain

analytic expressions for the axial/radial and torsional modes, respectively. In this aspect, the

approximation method facilitates the calculation of a complete modal set.

1

2

3

4

5

Analytic Frequencies Cubic Spline Approx ]I Linear Spline Approx

406.80 603.83

531.53 _ 924.29

541.03 _ 1362.11

543.53 [1064.22] 1807.86

544.60[1330.2712255.52

4o6.8o 6o3.83
531.53 _ 924.29

541.03 1362.19
543.5811064.8211808.81
544.85 _ 2262.44

406.99 603.87

531.71 _ 925.95

541.25 1368.07
543.85 ]1o72.81[ 1822.21

545.06 [1347.10J 2283.78

Table 3. Analytic frequencies and approximate values obtained using N = 8 cubic splines

and N = 32 linear splines. Frequencies of the torsional modes are boxed.
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5.1.2 m > 1, n --- 0 Purely Extensional Modes

A second case in which analytic expressions for the shell frequencies and modes are easily ex-

pressed occurs when purely extensional modes are present. The first three analytic frequencies

given by (3.6) are compared in Table 4 with approximate values obtained with N = 8 cubic

splines. Due to the accuracy of the method, the approximate frequencies agree with analytic

values to within at least two decimal places in all three cases. Corresponding modal plots are

given in Figure 3. The numerical plots in the left column illustrate the two approximate solu-

tions, for each frequency, obtained by solving the matrix eigenvalue problem (4.13) (again, the

full solution set is automatically obtained by the approximation method). The corresponding

analytic modes given by (3.3) and (3.7) are depicted in the right column of the figure. With

n -- 0, it is seen from (3.3) and (3.7) that the analytic expressions for the longitudinal modes

are U(x,O) = A1 cos(m0) and U(x,O) = A2sin(mO) with zero displacement expected in the

circumferential and transverse components. This longitudinal behavior is noted for both the

analytic and approximate modes in Figure 3.

m=l,n=0

rn=2, n=0

m=3, n=0_

Analtyic (Hz) Galerkin (Hz)

338.75 338.75

677.50 677.50

1016.25 1016.25

Table 4. Analytic and approximate frequencies for purely extensional modes obtained using

N = 8 cubic splines.

5.1.3 m > 1,n _> 1 General Shell Modes

For the general case with m > 1,n > 1, the axial, radial and torsional modes are all coupled
2

with analytic values for the natural frequencies determined by (3.6) where _,,_j is one of the

three solutions to the cubic equation (3.5). These analytic values are compared in Table 5

with approximate frequencies obtained using the cubic spline basis with N = 8, M = 3. For

comparison sake, frequencies of the axisymmetric (m = 0) and purely extensional (n = 0) are

also included in this table. The accuracy of the cubic spline discretization leads to approximate

frequencies having relative errors less than 0.5% for the reported values (the largest relative

error for the reported values occurs in the second frequency obtained with m = 3, n = 5). The

convergence of the method and accuracy obtained using the cubic splines is further illustrated

by the frequency results in Table 6 where approximates obtained with N = 8 and N = 16 are

compared. A check of the relative errors shows that the method is converging more quickly

than the expected O(h 4) rate.

The modes for this general case are again obtained from (3.3) and (3.7). The coupling

between the axial, radial and torsional modes can be seen in Figure 4 where the 873.61 Hz

mode is plotted along the axial line g = {(x,O)[O = _r/4,0 _< x < 12}.

We reiterate that the full set of frequencies and modes can be approximated using the

Fourier-Galerkin method by simply solving the matrix eigenvalue problem (4.13). Moreover,

this technique can be directly extended to the problem of calculating frequencies and modes for

shells with other boundary conditions by suitably modifying the spline basis. This is illustrated

in the next section where the modal analysis of a shell with clamped ends is considered.
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Figure 3. Purely extensional modes in the longitudinal direction. For N = 8 cubic splines,

numerical values of U _¢ along the curve g = {(z,/9)]0 </9 < 2rr, a: = 0} are plotted in left column.

Corresponding shell modes given by (a.a) and (3.7) with n = 0 are depicted in right column•
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n=l

n:2

n=3

n=4

n=.5

n=O

n=l

n.-.=2

n -= 3

n=4

n=5

n=O

n=l

n=2

n=3

n=4

n=5

n=O

n=l

rt=2

n=3

n=4

n=5

Analytic Frequencies Galerkin Approximates

m-O

266.05 406.80 603.83

531.53 532.11 924.29

541.03 798.16 1362.11

543.53 1064.22 1807.86

544.60 1330.27 2255.52

m=l

338.75

147.09 508.59 873.61

327.96 714.55 1115.55

434.81 909.78 1486.93

483.84 1137.35 1900.34

507.08 1383.62 2329.09

m=2

677.50

64.56 755.92 1340.06

187.34 917.53 1521.01

296.26 1100.21 1804.82

373.46 1300.70 2153.02

423.98 1519.53 2536.80

m=3

1016.25

33.48 1061.88 1858.96

111.09 1177.72 2001.04

198.51 1332.12 2225.92

275.56 1509.99 2514.74

336.44 1706.31 2848.26

m=O

n=2

n=3

n--4

n:5

266.06 406.80 603.83

531.53 532.11 924.29

541.03 798.22 1362.19

543.58 1064.82 1808.81

544.85 1333.95 2262.44

m=l

n=O

n=l

n=2

n=3

n:4

n:5

338.75

147.09 508.59 873.61

327.96 714.44 1115.55

434.83 909.85 1487.00

483.92 1138.09 1901.13

507.48 1388.30 2335.07

m=2

n=O

n=l

n=2

n=3

n=4

n=5

677.50

64.56 755.92 1340.06

187.35 917.53 1521.01

296.28 1100.29 1804.85

373.61 1301.67 2153.52

424.54 1521.01 2540.73

m=3

n=O

n=l

n-2

n=3

n=4

n-=5

1016.25

33.48 1061.88 1858.96

111.09 1177.73 2001.04

198.54 1332.21 2225.94

275.76 1511.08 2515.01

337.29 1714.42 2850.19

Table 5. Frequencies approximated with M = 3 and N -- 8 cubic basis functions.
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m=O,n=5

N = 8 544.85 1333.95 2262.44

N = 16 544.60 1330.30 2255.57

Analytic 544.60 1330.27 2255.52

m= l,n=5

N = 8 507.48 1388.30 2335.07

N = 16 507.08 1383.66 2329.14

Analytic 507.08 1383.62 2329.09

m=2, n=5

N = 8 424.54 1521.01 2540.73

N = 16 423.99 1519.56 2536.84

Analytic 423.98 1519.53 2536.80

m=3, n=5

N = 8 337.27 1714.42 2850.19

N = 16 336.45 1706.35 2848.28

Analytic 336.44 1706.31 2848.26

Table 6. Frequencies approximated with M -- 3 and N = 8, 16 cubic basis functions.
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Figure 4. Approximate 873.61 Hz modes along the line _ = {(x,_)l_ = _r/4,0 _< x _< 12}.
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5.2 Modal Example: Fixed-Edge Shell

The lack of analytic expressions for the frequencies of a clamped-end shell necessitates their

numerical approximation. Like the simply supported case, the frequencies are approximated

by solving the matrix eigenvalue problem (4.13) with basis functions constructed so as to

satisfy the fixed-edge boundary conditions (2.6). Axisymmetric frequencies obtained using a
Fourier limit of M = 0 and x-axis basis number of N = 16 are summarized in Table 7. A com-

parison with the axisymmetric frequencies of the simply supported shell (see Table 3) shows

that only the torsional frequencies match (the torsional frequencies are boxed to facilitate

comparison).

Approximate Frequencies

1266.05] 410.10 ]532.11]
533.22 541.76 543.99

544.96 545.56 546.07

546.69 547.63 549.25

552.18 557.39 565.57

571.17 575.20 599.46

1798.161 921.82 [1064.22 I

1330.30J 1360.78 1596.45

1806.93 1862.80 2129.72

2254.85 2397.95 2669.00

2703.58 2945.38 3153.02

3230.49 3527.16 3603.61

3833.08 4056.54 4119.08

4514.29 4981.08 5167.03

5172.22 5462.62 5963.62

6480.17 6962.94 8734.17

8742.91

Table 7. Cubic spline approximates of axisymmetric frequencies obtained with M = 0 and

N = 16 for the clamped-end shell.

While the torsional modes for the fixed-edge shell match those for a simply-supported

shell when m = 0 (see [16]), the general modes for the two shells differ due to boundary

conditions. To illustrate, fixed-edge and simply-supported shell modes having similar fre-

quencies and wavenumbers are compared in Figure 5. Specifically, the 545.56 Hz mode for
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the clamped-edge shell is compared with the corresponding 545.66 Hz mode for the simply-

supported shell. The plots show that while the qualitative mode shapes are somewhat similar

for the two boundary conditions, the clamped-edge shell does not exhibit the trigonometric

modal relations which characterize the simply-supported shell. This illustrates the neces-

sity of obtaining approximations consistent with the physical application if employing modal

expansions for simulations, damage detection or control.
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Figure 5. Axisymmetric modes UAr(x, 0), VAr(x, 0) and WAr(x, 0) corresponding to the fixed-

edge 545.56 Hz frequency and simply supported 545.66 Hz frequency.

5.3 Forced Shell Examples

A second means of testing the capabilities of the approximation method is through the consid-

eration of steady state and time-dependent shell responses to given force and moment inputs.

In the first examples of this section, known true solutions are used to calculate corresponding

force input. By comparing the resulting approximate solutions with the original true solu-

tions, the expected O(h_) and O(h_) convergence rates for the linear and cubic splines can

be verified. In the final example, a triangular input to the patch terms (modeling a voltage to

spike to the patches) provides a broadband model response. The resulting frequencies are then

compared with those obtained by solving the matrix eigenvalue problem (4.13) to illustrate

the consistency among techniques.
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5.3.1 Steady State Solution - Linear and Cubic Spline Approximations

In this example, steady state, f-dependent solutions satisfying the clamped edge boundary

condition are considered. The true displacements were taken to be

u(x,O) = sin(2 rx/g)sin(O)

v(x, 0) = sin(4.x/ ) sin(20)

w(x, O)= [cos(2 rx/g)- 11cos(3O),

(5.1)

and hence they satisfy the fixed-edge conditions (2.6). Plots of those displacements are given in

Figure 6 to illustrate that significant bending deformations are present. The forcing functions

were obtained by substituting the true solutions into the strong form (2.1) of the equations

and solving for the functions _, q0 and _.

Since the forces are time-independent, the coefficients 0 _" = [ul,'..,ux,,, vl,...,v._,

wl,'", wj¢,_] T for the approximate displacements uU(8, x),vN(o,x) and wN(O,x) of (4.1) are

obtained by solving the matrix system

K_OH = par ,

where /(ff and Par are defined in (4.9) and (4.10), respectively. The specific construction

and dimensions of Kff and /_ar depend upon the bases used in forming u N, v N and w N (see

Table 1).

When approximating the solutions to (5.1), both the linear and cubic axial basis functions

summarized in Table 1 were considered. For both cases, the maximum absolute errors over

a uniform 25 × 25 grid in (x, 0) are summarized in Table 8 while ratios of the errors are

given in Table 9 (the absolute errors provide the same information as relative errors since the

magnitudes of the solutions are on the order of one). For both sets of approximations, equal

axial index limits were assumed and are denoted by N_ = N_ = N_ = N. Due to the nature

of the forcing function, the Fourier limit M = 3 was sufficient for resolving the circumferential
behavior.

The error results in Table 8 illustrate the rapid convergence of the method with the fully

cubic spline basis while the ratios in Table 9 demonstrate the respective O(h4_) and O(h_)

convergence rates of the cubic and linear bases, respectively (the multiplying constant causes

the ratios in the linear case to be slightly less than the expected value of four). It should be

noted that due to the coupling between the longitudinal, circumferential and transverse dis-

placements in the modeling equations, the accuracy of the transverse approximate is reduced

to O (h 2) when linear splines were used to approximate u and v, even though cubic splines

were used to approximate w.

The approximate longitudinal displacements obtained with N = 4,8, 16 and 32 linear

axial basis functions are plotted in Figure 7. Comparison with the true solution in Figure 6

illustrates that with N = 16, the approximation method has captured the qualitative behavior

of the solution. Corresponding plots of the circumferential and transverse displacements,

plotted in Figures 14 and 15, can be compared with the true circumferential and transverse

solutions in Figure 6.
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Fully Cubic Spline Axial Basis Mixed Linear/Cubic Axial Basis

N=4 N=8 N=16 N=4 N=8 N=16 N=32

u 1.663 - 1 2.003 - 3 3.936 - 5 5.010 - 1 1.266 - 1 3.277 - 2 7.751 - 3

v 5.687-1 1.501-2 6.235-4 1.580+0 2.962-1 8.313-2 2.197-2

w 3.136-1 4.075-3 5.552-5 1.864+0 4.903-1 1.236-1 3.784-2

Table 8. Absolute errors in the longitudinal u, circumferential v, and transverse displace-

ments w with cubic and linear spline axial basis functions.

u

V

W

Cubic Basis Linear/Cubic Basis

N=4 N=8
N=8 N=16

83.052 50.888

37.899 24.069

76.961 73.395

N=4 N=8 N=16

N=8 N=16 N=32

3.956 3.863 4.228

5.336 3.563 3.785

3.801 3.966 3.268

Table 9. Ratios of the absolute errors with linear and cubic spline axial basis functions.
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Figure 6. True longitudinal, circumferential and transverse displacements.
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5.3.2 Time-Dependent Solution - Cubic Spline Approximation

To illustrate the approximation of the dynamic shell model (including mass, stiffness, damping

and force contributions), time-dependent forcing functions and solutions are considered in the

final two examples. Cubic spline axial basis functions are used for discretizing the longitudinal,

circumferential and tangential displacements in both cases.

For this example, the true solutions were taken to be

u(z, O) = t z sin(2_rz/g) sin(O)

v(x, O) = t 2 sin(4_rx/g) sin(20)

w(x,O) = t 2 [cos(2rcx/g) - 11 cos(30)

(compare with (5.1)). Solving for _x,00 and 0- in the strong form of the equations (2.1)

yields the forcing functions. Since the forcing terms are time-dependent, discretization of the

modeling equations yields the matrix equation (4.12) in R N, N = 2A/'. As detailed in [16],

the resulting ODE system is moderately stiff and a variable-stepsize, variable-order stiff ODE

routine was used to numerically integrate the system.

The absolute errors in the longitudinal, circumferential and transverse displacements at

time T = 1.5 sec are reported in Table 10 while error ratios as N was doubled are reported in

Table 11. A comparison between the errors in Table 10 and the steady state errors in Table 8

indicates that they are of the same magnitude while comparison between Tables 11 and 9
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indicates nearly identical error ratios. Both Table 10 and 11 comfirm the O(h4,) convergence

rate of the method in the damped, time-dependent problem. Hence with the fully cubic spline

axial basis, the accuracy contributes to the efficiency of the method through reduced system

sizes. This significantly speeds the time marching which is advantageous in simulations,

parameter estimation and control applications.

N=4 N=8 N=16

u 3.742-01 4.506-03 8.855-05

v 1.280+00 3.376-02 1.403-03

w 7.056-01 9.169-03 1.249-04

Table 10. Absolute errors of the longitudinal u, circumferential v, and transverse displace-
ments w at time T = 1.5 seconds.

N=4 N--8

N=8 N=16

u 83.052 50.888

v 37.899 24.069

w 76.961 73.400

Table 11. Ratios of the absolute errors at time T = 1.5 seconds.

5.3.3 Time-Dependent Solution - Patch Input

In the final example, the external inputs to the patch were assumed to come only from moments

and forces generated by a single patch pair located between xl = 4.5 in, x2 = 7.5 in and

8a = 0, 82 = _r/6. Material and patch parameters are summarized in Table 12. The reported

patch parameters are consistent with those of patches currently being used in the Acoustics

Division, NASA Langley Research Center.

For this case, the force vector fi'Y(t) of (4.10) has the components

[F_(t)]j= foi2 f_:_R(N_),_(t)_ dxd8

[F_(t)]j fol 2r_ .0/3_= e8

[F_,(t)]j = - R(M_)p_(t) + -_(Me)p,(t) dx d8
1 1

where (N_)p_, (N0)p¢, (Ms)p_ and (M0)p_ are defined in (2.4) with i = 1. It is noted that due to

the characteristic functions, the integrMs reduce to only that region covered by the patches.

This is in accordance with the physical fact that moments and forces are generated only in

patch regions.
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The voltage V_(t) to the outer patch (see (2.5)) was taken to have a triangular shape

with a magnitude of 95 V and a temporal duration of 1 x 10 -4 seconds. The voltage V2(t) to

the inner patch was taken to be V2(t) = -V_(t). This input models an out-of-phase voltage

spike to the patches and serves to generate a broadband shell response. The input of such

voltages to patches is a current technique for eliciting shell responses when performing system

identification or damage detection.

The clamped-edge boundary condition (2.6) was assumed with compatible cubic basis

functions in the numerical approximation. The index limits N = 8 and M = 3 were sufficient

for resolving the shell dynamics in the previous examples, and those limits were also used to

obtain the results here. The frequencies and displacements for the point (x, 8) = (7.83, 0.89)

are plotted in Figures 10-12 (this point lies just outside the (x, 8) = (7.5, 7r/6) corner of the

patch). Since out-of-phase simulated voltages were input to the inner and outer patches, the

input was primarily in the form of external moments, with only higher order terms contributing

to the in-plane forces (see the expressions of (2.5)). The small magnitudes of the displacements

results from the use of a single actuating patch pair with a short duration voltage spike. Note

that all computations were performed with double precision accuracy.

In Table 13, the natural frequencies obtained through this dynamic patch excitation are

compared with those obtained for the undamped shell by solving the matrix eigenvalue prob-

lem (4.13). As expected, the two sets of frequencies are nearly identical since the same dis-

cretization limits were used in both cases. The slight differences are due to the Kelvin-Voigt

damping and sample rates in the dynamic simulation.

h = 0.01 in

p = 0.283 lb/in 3

v = 0.3

= 12.0 in

xl = 4.5 in

81 = 0

Ep_ = 9.137 x 108 lb/in 2

hp_ = 0.001 in

R = 3.00 in

E = 3 x 107 lb/in 2

C D ----- 15.099 lb. in- s

x2 = 7.5 in

82 = _/6

up, = 0.31

d31 = 7.4 x 10 -9 in/V

Table 12. Material and piezoceramic patch constants.
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Dynamically Excited Frequencies from

Frequencies (Hz) Eigenvalue Problem (Hz)

60.1

176.1

301.8

343.0

435.8

508.4

545.0

758.1

919.5

1119.4

99.5 60.2

211.2 176.0

342.7 301.8

427.2 342.9

488.0 435.8

534.7 508.7

561.2 544.9

889.0 758.2

956.4 919.3

1119.2

99.5

211.1

342.9

427.4

488.4

534.7

560.6

889.0

956.5

Table 13. Natural frequencies obtained through dynamic excitation and solution of the

matrix eigenvalue problem (4.13).
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Figure 10. Longitudinal displacements and frequencies for the damped shell.

x I0 -T Disphloemeilts In _ v direcllon x 10 .4 Excited Fl'equencle_ in _e v diniclion

1.4

0.! ® 1.2

i't> 0

 o..ii

o-iL-1
0.4

-1.5 O.

-2

0.05 0.1 0,15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (seconds) Hertz

Figure 11. Circumferential displacements and frequencies for the damped shell.
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Figure 12. Transverse displacements and frequencies for the damped shell.

6 Concluding Remarks

In this paper, a spline-based Galerkin method appropriate for discretizing cylindrical shell

models has been presented. The emphasis throughout the discussion was on the development

of a method which is sufficiently flexible for a variety of models including those which arise

in smart material applications. Galerkin expansions, in terms of basis functions composed

of modified splines in the axial direction and Fourier components circumferentially, provided

this flexibility. Discretization in this manner also provided an accurate and efficient means

of approximating static and dynamic shell deformations as well as natural frequencies and

modes for a variety of boundary conditions.

As demonstrated through numerical examples, the method yielded O (h_) convergence for

physically realistic values of the shell thickness h when linear splines were used as axial basis

elements for u, v, and O (h 4) accuracy when all three components u, v, w were approximated

by cubic spline expansions. The fourth order accuracy attained with cubic splines contributes

to the method's efficiency by reducing the number of basis elements and the hence system

sizes necessary for resolving the shell behavior (in many of the examples, N = 8 cubic spline

basis functions were sufficient for resolving the displacements u, v, w). Unlike the splines, the

Fourier expansions in _ form a truncated approximate in which all Fourier components with

index less than the limit index M are resolved. In applications, the number of excited Fourier

modes is often quite small, thus permitting small limits M.

Another advantage of the cubic spline basis is the fact that differentiability and smooth-

ness properties are constructed in the basis as compared with many finite element methods in

which these conditions are obtained through compatibility conditions at the nodes. This sim-

plifies construction of system matrices since components are Constructed simply through the

quadrature of basis elements. This also reduces the susceptibility of the method to membrane

and shear locking since there are no elements per se in which asymptotic incompatibilities

can arise. Alternatively, the spline-based Galerkin method can be thought of as similar to a

spectral method but with basis functions having finite support.
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Initial tests have indicated no tendency toward membraneor shear locking when using
the fully cubic spline axial baseswith small partition size hz. This is consistent with finite

element results reported in [25]. These locking considerations, in combination with the O (h 4)

accuracy of the cubic splines, indicate that the fully cubic spline axial basis will be preferable

to the mixed linear/cubic basis in most applications.

The method was also demonstrated to be flexible with regards to boundary conditions,

and both clamped-end and simply-supported edge conditions were attained through minor

modifications in the boundary splines. Free end conditions are natural boundary conditions

in the weak model formulation and hence no basis modifications are necessary in that case.

"Almost fixed" boundary conditions modeling slight edge rotations and inplane movement are

also common in applications due to the difficulty in maintaining perfect boundary clamps. As

discussed in [7], only minor modifications are necessary for adopting the splines for this case.

Finally, the approximation method is directly applicable to shell models incorporating pas-

sive (internal) and active (external) contributions from embedded or surface-mounted sensors

and/or actuators. When derived from physical principles, the passive actuator/sensor con-

tributions are manifested in the physical model parameters (e.g., density, stiffness, damping,

Poisson ratio) and are incorporated in the resulting discrete system simply through piecewise

integration over the shell domain. The external moments and forces are isolated to regions

covered by actuators through characteristic functions in the model. In the weak form, this

yields integrals over the actuator regions. While partitions should be aligned with actuator

edges to obtain optimal accuracy, neither the basis nor inner products must be modified to ac-

count for sensors and/or actuators. This is advantageous when approximating shell dynamics

in smart material applications.
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